Study on the positive segregation in columnar-to-equiaxed transition zone

Author:

Wang Yadong,Zhang Lifeng

Abstract

Laboratory experiments of steel ingots under three cooling modes and industrial trials of continuous casting (CC) blooms and billets were conducted, respectively. Corresponding results of the macrosegregation and the solidification structure were investigated. The mechanism of the positive segregation in the columnar-to-equiaxed transition (CET) zone was proposed. For laboratory experiments of ingots under three cooling modes, including water cooling, water cooling for 15 s followed by air cooling, and air cooling, obvious positive segregation was generated in the CET zone, and the degree of segregation was 1.024, 1.025, and 1.015, respectively. For industrial trials of three kinds of steel, CC bloom, round bloom, and billet, positive segregation was formed in the CET zone, and the degree of segregation was 1.06, 1.04, and 1.06, respectively. With the growth of columnar dendrites, solute elements were rejected on the liquid–solid interface. The downward flow near the columnar tip region and the upward flow in the center melt can carry the solute-rich melt to the molten pool. When the CET occurred, equiaxed grains accumulated around the columnar dendrite tips, and the solid network became less permeable. The liquid flow in the network was significantly suppressed, and thereby the solute-enriched liquid was ‘arrested’ locally. Solute-enrich liquid would be further sucked into the interdendritic region owing to the solidification shrinkage. As the sample was fully solidified, the obvious positive segregation was found at the CET zone.

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3