Phase transformation in the metallic reduction process of low-grade laterite nickel ores for ferronickel alloy production

Author:

Biao Tang,Bing Li,Hui Yang

Abstract

The utilization of low-grade laterite ores has become necessary due to the intensive mining of high-grade nickel sulphide ores for a long time. In this study, metallic reduction roasting followed by magnetic separation to produce ferronickel alloy and abandon gangue minerals provides an effectively treatment for laterite ores. The experimental results indicate that ferronickel alloy containing more than 7.5% Ni with its recovery of 95% and more than 70% Fe with its recovery of 90% was produced successfully from the low-grade laterite ore. In the metallic reduction roasting process, the thermodynamic analysis displayed that the higher temperature promotes the conversion percentage of the oxidic nickel and iron to metallic nickel and iron. The ferronickel particle morphology with a liquid-solid growth and aggregation mechanism in the reduced laterite ore were investigated by SEM/EDS. XRD analysis revealed that the nickel laterite ore was transformed from hortonolite (MgOx · FeO2-x · SiO2) to forsterite (MgOx · CaOy · SiO2) during the metallic reduction process.

Funder

basic scientific research operating expenses of Education Department of Heilongjiang Province under Grant

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3