CFD study on the effect of the oxygen lance inclination angle on the decarburization kinetics of liquid steel in the EAF

Author:

Ramirez-Argaez Marco A.,Conejo Alberto N.

Abstract

In Electric Arc Furnace (EAF) steelmaking the main chemical reaction is the decarburization reaction. This reaction is promoted by the injection of oxygen using supersonic or coherent jets and further chemical reaction with dissolved carbon in liquid steel at high temperatures. A 3D mathematical model to describe the effect of the injection angle, oxygen gas flow rate and number of lances on the decarburization kinetics of molten steel, in the absence of the top slag layer has been developed. The model has been validated using experimental data reported in the literature. The model shows that the decarburization kinetics is promoted by decreasing the injection angle from the horizontal, condition that improves both bath movement and reaction kinetics. These findings suggest that current injection angles in industrial EAF’s can be decreased in order to improve the decarburization rate. The main mechanism is the effect of the gas jet on the motion of the liquid. Taking into consideration that decreasing the injection angle from the horizontal promotes splashing, the numerical model predictions are employed to suggest alternative solutions in order to reach high decarburization rates.

Funder

no funding

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

Reference51 articles.

1. Modeling of Fluid Flow Conditions around the Slag/Metal Interface in a Gas-stirred Ladle.

2. A New Approach to Model Sulphur Refining in a Gas-stirred Ladle. A Coupled CFD and Thermodynamic Model.

3. Shver V.G., Reusable lance with consumable refractory tip, US Patent 6212218, 2001

4. Anderson J.E., Mathur P.C., Selines R.J., Method for introducing gas into a liquid, US Patent 5814125, 1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational Investigation of Coherent Jet Behavior Generated by H2 Shrouding Flow;Metallurgical and Materials Transactions B;2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3