Author:
He Dongping,Xu Huidong,Wang Tao,Ren Zhongkai
Abstract
This paper investigates vibration characteristics of the corrugated roll system and designs a time-delay feedback controller to control the parametrically excited vibration of system. The model of parametrically excited nonlinear vertical vibration of roller system is established by considering the nonlinear damping and nonlinear stiffness within corrugated interface of corrugated rolling mill. The approximate analytical solution and amplitude-frequency characteristic equations of principal resonance and sub-resonance of roller system are obtained by using the multiple-scale method. The influences of nonlinear stiffness coefficient, nonlinear damping coefficient, system damping coefficient and rolling force amplitude on vibration are further analyzed. The time-delay feedback controller is designed to eliminate the jump and hysteresis phenomenon of the roll system and numerical simulation results demonstrate the effectiveness of the controller. The analysis results provide some theoretical guidance for vibration suppression of roller system of corrugated rolling mill.
Subject
Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献