Prediction of hot metal temperature in a blast furnace iron making process using multivariate data analysis and machine learning methodology

Author:

Kumar ArunORCID,Agrawal Ashish,Kumar Ashok,Kumar Sunil

Abstract

The feed-forward back propagation neural (FFBPN) network method and multivariate data analysis are used to present a new approach for predicting the health of a blast furnace in the form of hot metal temperature (HMT), which is a crucial parameter to control the stable flow of hot metal production while avoiding major danger incidents during the ironmaking process. The health status also appears to predict the performance level of BF at a premature time, allowing the operator to take necessary steps to avoid BF deterioration. The BF’s health status designates the stability or instability of the BF, which may arise during the manufacturing process of hot molten iron, and is used to find the fault. In this paper, the health status of BF was determined with the help of a FFBPN and correlation matrix. This was done with Matlab (Version 2018Rb) software that uses data pre-processing, variable reduction, and a selective attribute of a data set. The FFBPN model has been trained, tested, and validated, and it has got 96% correlation coefficient of HMT prediction of combination of all data sets. The predicted HMT using several actual process data sets has been helpful in identifying the process irregularity in BF.

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3