Author:
Setargew Nega,Parker Daniel J.
Abstract
Zinc diffusion-induced degradation of AISI 316LN austenitic stainless steel pot equipment used in 55%Al-Zn and Zn-Al-Mg coating metal baths is described. SEM/EDS analyses results showed that the diffused zinc reacts with nickel from the austenite matrix and results in the formation of Ni-Zn intermetallic compounds. The Ni-Zn intermetallic phase and the nickel depleted zones form a periodic and alternating layered structure and a mechanism for its formation is proposed. The role of cavities and interconnected porosity in zinc vapour diffusion-induced degradation and formation of Ni-Zn intermediate phases is also discussed. The formation of Ni-Zn intermediate phases and the depletion of nickel in the austenite matrix results in the precipitation of σ-phase and α-ferrite in the nickel depleted regions of the matrix. This reaction will lead to increased susceptibility to intergranular cracking and accelerated corrosion of immersed pot equipment in the coating bath. Zinc diffusion induced precipitation of σ-phase in austenitic stainless steels that we are reporting in this work is a new insight with important implications for the performance of austenitic stainless steels in zinc containing metal coating baths and other process industries. This new insight will further lead to improved understanding of the role of substitutional diffusion and the redistribution of alloying elements in the precipitation of σ-phase in austenitic stainless steels.
Subject
Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Zinc bath phenomena;The Metallurgy of Zinc Coated Steels;2023