Improvement of hot ductility of C-Mn Steel containing arsenic by rare earth Ce

Author:

Xin Wenbin,Zhang Jing,Luo Guoping,Wang Ruifen,Meng Qingyong,Song Bo

Abstract

The effect of different Ce content on the hot ductility of C-Mn steel containing arsenic was investigated at the temperature ranging from 700 to 1100 °C conducting Gleebel-1500 thermal-mechanical simulator. The reduction of area (RA%) was used to evaluate the hot ductility. The 0.16 mass% As widened the ductility trough range and especially, decreased the RA value at 850–950 °C. Conversely, adding Ce in the steel could remedy the arsenic-induced hot ductility deterioration. Moreover, with the increase of Ce content from 0 to 0.035 mass%, the RA value at 800–950 °C significantly increased, compared to that of the arsenic steel. When the content of Ce reached 0.027–0.035 mass%, the RA value at 800–850 °C was even higher than that of steel without As. Besides, the corresponding fracture morphology was changed from intergranular feature to ductile and/or interdendritic feature. Grain refinement by Ce addition, the formation of arsenious rare earth inclusions and grain boundary segregation of Ce were considered to improve the hot ductility of the steel containing As.

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

Reference20 articles.

1. Huang X.L., Influence of tramp elements arsenic, tin and antimony segregation to grain boundary on hot ductility, Master’s thesis, Wuhan University of Science and Technology, Wuhan, 2006

2. Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting

3. Hot ductility of C–Mn and microalloyed steels evaluated for thin slab continuous casting process

4. Control of Transverse Corner Cracks on Low-Carbon Steel Slabs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3