Modeling of supersonic jet behavior in the vacuum refining process
-
Published:2021
Issue:1
Volume:118
Page:114
-
ISSN:2271-3646
-
Container-title:Metallurgical Research & Technology
-
language:
-
Short-container-title:Metall. Res. Technol.
Author:
Sheng Zhonghua,Feng Lianghua,Liu Kun,Yang Bin,Kong Lingzhong
Abstract
There are two problems to be solved in the numerical simulation of the top blown oxygen vacuum refining process. (1) The two-equation turbulence models underpredict the turbulence mixing shear process for high-temperature gradient jet flows. (2) The high compressibility of the jet in a low vacuum environment. In this study, the SST k-ω turbulence model is modified by the composite function of the compressibility factor and the total temperature gradient. Based on the experimental model of the Kotani vacuum jet, the modified turbulence model was used to simulate the supersonic jet behavior of oxygen lance at different ambient temperatures. The reliability of the model is verified by the semi-empirical formula of Ito and Muchi. The simulation results show that the entrainment rate is an important inducing factor. The potential core length and the supersonic core length at the temperature of 1800 K are 2.5 times and 2.0 times that at the temperature of 285 K, respectively. Besides, based on the ejection model established by Ricou and Spalding, the calculation formula of turbulence entrainment rate at different ambient temperatures is obtained. This research work will benefit greatly to the supersonic jet behavior in Vacuum Refining.
Funder
The National Natural Science Foundation of China
The National Key R&D Program of China
Liaoning Province Natural Science Foundation
Department of Education of Liaoning Province
Subject
Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献