Formation mechanism and control strategy of M-shaped and W-shaped profile defects in hot rolling of aluminum plate

Author:

Liu Chao,Wu Hairui,He Anrui,Han Wenhao,Ma Bo,Zhang Huixia

Abstract

Good profile is one of the important control objectives in hot rolling of aluminum plate. However, M-shaped profile defect often appears for wide aluminum plate and W-shaped profile defect often appears for narrow aluminum plate. In order to reveal the formation mechanism of the two typical profile defects, the evaluation indexes of the M-shaped profile defect and W-shaped profile defect are proposed, and the roll-plate coupling deformation model and the roll thermal expansion model are established. The effects of rolling force, bending force and work roll thermal expansion on the profile are analyzed using these models. The results show that the rolling force and bending force has little effect on M-shaped profile defect, and the main reason for this problem is the uneven thermal expansion of work roll. Meanwhile, the W-shaped profile defect is produced under the combined action of the roll thermal expansion and large roll deflection, and the roll thermal expansion is the necessary condition for the formation of W-shaped profile defect. The greater the thermal crown of the roll, the smaller the rolling force and the greater the bending force, the more obvious the W-shaped profile defect. Based on the above conclusions, industrial tests were carried out. By increasing the cooling flow in the middle of the roll, the frequency of M-shaped profile defect decreases from 29.4% to 9.0%. Meanwhile, by increasing the positive shifting of CVC rolls, reducing the bending force, and decreasing the cooling flow of work roll at the edge of the plate, the frequency of W-shaped profile defect decreases from 42.1% to 14.1%. The profiles of the hot rolled aluminum plates are effectively improved by the developed control strategies.

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3