Abstract
This paper presents the identification of dislocation-density-based crystal plasticity parameters for a A508 Cl3 bainite steel in non-irradiated and irradiated states and at different temperatures. The representative volume element for the identification process is a cube containing 1000 steel grains represented by a Voronoi mosaic discretized by finite elements. The grains are assigned crystallographic orientations corresponding to an isotropic texture. The crystal constitutive model is based on a plastic flow law, a hardening law, and a law of evolution of dislocation densities. Modeling parameters are determined by a two-step calculation with two different crystal structures: (1) using a simple structure with 343 identical grains to identify 7 parameters, (2) using a Voronoi tessellation of 1000 grains to refine the parameters. Thereafter, the calculated stress-strain curves are compared with experimental stress-strain curves. The results show that the simulated stress-strain curves are in good agreement with those of experiments, highlighting the reliability of the proposed procedure to account for the significant effects of irradiation and temperature.
Subject
Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献