Author:
Al-Sayed Ali Samar Reda,Hussein Abdel Hamid Ahmed,Nofal Adel,Hassab Elnaby Salah Ibrahim,Elgazzar Haytham
Abstract
A wear resistant coating was successfully made on an annealed Ti-6Al-4V titanium alloy by laser surface cladding using 60 wt.% WC + wt.% 40 NiCrBSi powder blends. Coaxial laser cladding was performed by means of Yb:YAG disk laser with a 3-KW continuous wave. Different laser interaction times were attempted to get the optimal conditions for promising mechanical properties. The new contribution was to accomplish larger clad layer thickness with applying the shortest possible laser interaction time that can achieve superior clad layer properties. This will decrease energy consumption with an expected money saving which is an essential factor for successful engineering solutions. A high powder flow rate of 20 g.min−1 was intended in order to obtain a thick, nonporous and crack free clad layer. The clad samples were subjected to thorough microstructure investigations, in addition to microhardness and wear evaluation. The coating so produced exhibits multiple hardness values and exceptional wear resistance under adhesive/sliding wear conditions. The obtained results expose clad layer with superior quality that was achieved at a laser interaction time of 0.3 s. An enhancement in the microhardness values of the clad layers by more than fourfold was attained and the wear resistance was thus significantly improved.
Subject
Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献