Thermodynamics and transient behavior of the inclusion in Si deoxidized stainless steel for high-grade plate

Author:

Wang Wanlin,Xue Liwen,Zhang Tongsheng,Zhou Lejun,Huang Daoyuan,Tian Weiguang,Xu Jialin

Abstract

The experiments were carried out to determine the transient behavior of the inclusion in Si-deoxidized stainless steel for high-grade plate. The samples were taken from three heats of the steel during the whole production process from the AOD to the mold, which were subsequently examined by an automatic scanning electron microscope with field energy dispersive spectrometer (FE-SEM&EDS). It can be summarized that appropriate calcium treatment intensity could modify inclusions into liquid ones. Excessive calcium treatment above ([Ca] = 25 ppm) will increase the melting point of the inclusions, which cannot keep in the liquid region at the solidification temperature. Therefore, the calcium addition in Si-deoxidized stainless steels should be controlled to a relatively lower value ([Ca] = 10 ppm). In addition, the content of aluminum in steel also has an important influence on the control of inclusion. When the content of aluminum ([Al] = 0.012%) is too high, the inclusions in steel are difficult to be controlled within the liquid phase. The chemical evolution of the inclusions in steel at high temperature and during solidification process were comprehensively calculated, considering all types of inclusions such as calcium oxide, aluminum oxide, silicon oxide, calcium aluminate, calcium silicate, mullite, and liquid inclusion. The thermodynamic calculations are in good agreement with experimental results, which can predict the formation of the inclusions in Si-deoxidized stainless steels.

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3