Research on the analytical model of rolling force for TiAl alloy pack rolling

Author:

Wang Zhanrui,Tang Guangyao,Lei Zhenyao,Wang Haijun,Xu Zhiqiang,Yu Hui

Abstract

Pack rolling is a hot rolling process for metals with poor plastic forming. The rolling force model is an important model for pack rolling process. Based on the E. Orowan differential equation and the characteristics of pack rolling process, the analytical model of rolling force for pack rolling process was established. Based on the established rolling force model, the influence of roll diameter, reduction rate, metal layer thickness ratio and shear yield stress ratio on the distribution of rolling stress, neutral angle and connection angle was studied. The results indicate that as the increase of reduction rate and shear yield stress ratio, and the reduction of metal layer thickness ratio, the middle layer metal is more prone to plastic deformation. The basic assumptions of the analytical model were verified through a three-dimensional finite element model. The outer layer metal and the middle layer metal were selected as 304 stainless steel and Ti-Al-2Cr-2Nb alloy for pack rolling experiments, respectively. The error between the calculated results of the analytical model and the experimental results is within 15%. The analytical model of rolling force can accurately predict the rolling force and provide theoretical guidance for the formulation of the pack rolling process.

Funder

Natural Science Foundation of Hebei Province

the central government guides local science and technology development fund projects

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3