Dynamic analysis of liquid permeability in the dripping zone of blast furnace and reaction behavior at the slag-coke interface

Author:

Deng Yong,Liu Ran,Li Tao,Gao Yanjia,Yao Kuo,Wang Laixin

Abstract

The dripping zone connects the cohesive zone and the hearth, it is one of the key areas of the blast furnace (BF). This study aims to explore the mechanism of the dripping process in BF. The dripping experiments under different conditions were carried out. Dynamics of liquid permeability in the dripping zone was analyzed, the reaction behavior at the slag-coke interface was investigated, and the consumption of coke in the dripping zone was clarified. The results show that: The retention ratio increases with the increase of Al2O3 content. The increase in retention ratio is related to the viscosity of slag. Once the Al2O3 content in slag increases, Si4+ coordination polymer ions in tetrahedra will be replaced by Al3+ cations, forming a tetrahedral structure of [AlO4]5– tetrahedron. The retention ratio decreases with the increase of FeO content. The dissociation of free oxygen ions (O)2 from FeO increases the concentration of free oxygen ions (O)2 in slag, this reduces the viscosity of slag. The presence of FeO can compensate for the increase in retention ratio caused by Al2O3. The quantitative relationship between retention ratio and Al2O3 content and FeO content in slag is obtained. The reduction reaction of FeO occurs at the slag-coke interface, the molten iron takes on the shape of small iron beads, which is the result of multiple small droplets gathering. The reduction of TiO2 is carried out by a series of reactions, the Ti exhibits a granular embedding state in molten iron, its color is darker than that of molten iron and its particles have distinct edges and corners. In the slag-coke area of retained sample, the reduction reaction occurs between coke and oxides in slag. The carbon will be consumed, resulting in a decrease in particle size. In the iron-coke area of retained sample, the carburization reaction occurs in large quantities due to the carbon content of molten iron in hearth is undersaturated, coke is further consumed.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3