Isothermal oxidation kinetics and oxidation behavior of nickel slag

Author:

Li Xiaoming,Zhang Xinyi,Li Yi,Xing Xiangdong

Abstract

To improve the reduction effect of nickel slag in preparing Fe–Co–Ni–Cu alloy, an oxidization pretreatment was carried out to changing the structure and phase of silicate and sulfide for the nickel slag before the reducing process. The oxidation behavior and kinetics of nickel slag under different temperature and time conditions were discussed. The results shown that in the oxidation process of nickel slag, the part of Fe2SiO4 was oxidized to Fe3O4 and further to Fe2O3, and the other part of Fe2SiO4 directly oxidized to Fe2O3. Meanwhile, the nickel, cobalt and copper in the form of silicate and sulfide were changed into oxides. The changes of the phases are beneficial to the subsequent reduction of nickel slag. The oxidation degree of nickel slag reached 98% under suitable oxidation conditions (900 °C, 15 min). The oxidation kinetic model of nickel slag obtained by Ln–Ln analysis and Model-fitting method was three-dimensional diffusion at lower temperature (300 °C, 400 °C and 500 °C) and random nucleation at higher temperature (700 °C, 900 °C and 1000 °C) respectively. The activation energies obtained by the model method and the model-free method were 28.58 kJ.mol−1 and 26.28 kJ.mol−1 at lower temperature (300 °C, 400 °C and 500 °C) respectively, and the corresponding value were 81.98 kJ.mol−1 and 78.36 kJ.mol−1 at higher temperature (700 °C, 900 °C and 1000 °C) respectively. The activation energy calculated by the two methods was relatively close, and both can be used to calculate the activation energy.

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3