Effect of composition and morphology of non-metallic inclusions on fracture toughness in as-cast AHSS

Author:

Wu Zhanfang,Liu Zhenyu,Qiu Shengtao,Li Xiangyang

Abstract

A set of water-cooling copper-chill mold equipment is designed to study the precipitation behavior of different inclusion types in test steel under different cooling conditions, as well as its effects on the steel mechanical properties. As the results reveal, slow cooling treatment near the solidus temperature of test steel is conducive to forming more MnS + Al2O3 composite inclusions. The impact energy (−16 °C) of slow-cooled cast ingots at the core position is 28% higher than that of the air-cooled ingots. Scanning electron microscopy analysis of the specimens shows that small cracks are formed around single Al2O3 inclusions, but no cracks were found around composite inclusions. A calculation model of the tessellated stress of composite inclusions in steel is introduced to verify this phenomenon. The calculation demonstrates that, with a cover of ductile MnS, stress concentration around the composite inclusion is significantly decreased as compared with the single Al2O3 inclusion in the test steel.

Funder

China Scholarship Council

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3