Reaction behavior of high manganese and high aluminum steel with chromium-containing ladle filler sand

Author:

Kong Lingzhong,Kang Ming,Zang Ximin,Li Shisen,Yang Jie

Abstract

In order to understand the reaction mechanism of high manganese and high aluminum steel with ladle filler sand and improve the ladle free-opening rate, some laboratory experiments were carried out. The effect of [Mn] and [Al] contents in the steel and reaction time on the interfacial reaction of steel-sand were considered. The reaction mechanism between the steel and filler sand is as follows. Firstly, [Mn], [Fe]and [Al] in steel react with SiO2 in filler sand to form a liquid phase dominated by MnO-Al2O3-SiO2-FeO. With the progress of the reaction, [Mn] and [Al] gradually reduce FeO, which leads to some metallic Fe being generated. Secondly, the liquid phase is further expanded, and solid phase (chromite phase) is dissolved into the liquid. At the same time, the Cr2O3 in the liquid phase is reduced by [Al] in the steel. Finally, the liquid phase flows down by the gaps because of gravity, forming a sintered layer. In addition, both [Mn] and [Al] in steel can increase the liquid phase of filler sand, because the MnO and Al2O3 of reaction products will lower the liquidous temperature, thus aggravating the sintering of filler sand.

Funder

National Natural Science Foundation of China

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3