Experimental and numerical modelling of mass transfer in a refining ladle

Author:

Joubert Nelson,Gardin Pascal,Popinet Stéphane,Zaleski Stéphane

Abstract

Mass transfer between liquid steel and slag is an important physical phenomenon during secondary metallurgy for prediction of the chemical reaction rate and adjustment of liquid steel composition. We study this phenomenon at ambient temperature with a water experiment and perform Direct Numerical Simulations, aiming to reproduce an argon-gas bottom-blown ladle. First, we measure the evolution of the time-averaged open-eye area as a function of the air flow rate. Both simulation and experiment agree relatively well and are close to other water experiments in the literature. Secondly, the mass transfer of thymol between water and oil is investigated. The experimental results show that two mass transfer regimes can be observed. The regime change coincides with atomization of the oil layer resulting in the continuous formation of oil droplets in the water whenever the air flow rate rises above a critical value. The numerical results for the mass-transfer rate or Sherwood number are obtained at small Schmidt numbers and are then extrapolated to the experimental Schmidt number of 1480. A good agreement with experiment is observed although with large error bars. The Sherwood numbers at the two largest simulated flow rates show a steep increase.

Funder

ANRT

GENCI

PRACE

ERC ADV

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3