Abstract
Morphologies and structures of pulverized coal and iron ore powder after mechanical activation were studied by SEM, XRD, FTIR and laser particle sizer. The microcrystalline structure of coal was found to be destroyed by mechanical activation via reducing the pile height and number of layers, and the organic structure of coal was altered through the destruction of the ether bond. Mechanical activation led to distortions and dislocations of the crystal lattice of iron ore, decreasing crystallite size, increasing the grain boundary area, and producing an amorphous phase. These increased the Gibbs free energies of dislocations and grain boundaries as well as the surface Gibbs free energy and the amorphization Gibbs free energy, which would eventually increase the energy stored in iron ore called mechanical storage energy. The longer the mechanical activation process, the higher mechanical storage energy for the iron ore will be saved. The amorphization Gibbs free energy is the biggest among the four kinds of Gibbs free energy, accounting for 94.8% ∼ 87.1% of the total storage energy in the mechanical activated iron ore.
Funder
Nature Sciences Foundation of China
Subject
Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献