Effect of cold rolling and subsequent aging on tensile properties and thermoelastic coefficient of Ni-Span-C 902 superalloy

Author:

Morakabati Maryam,Ahmadian Peyman,Goodarzi Mohammad Rasoul Moazami

Abstract

The influence of cold rolling and subsequent aging on tensile properties and thermoelastic coefficient (TEC) of Ni-Span-C 902 superalloy was investigated. The solution treated specimens conventionally cold rolled to 30–50% thickness reduction and subsequently aged at different temperatures ranging from 550 to 850 °C for 5 h. The results of room temperature tensile tests indicated that higher strength and elastic modulus are achieved by increasing the amount of reduction area from 30 to 50%. Also, the maximum tensile strength and elastic modulus are obtained in the specimens which were 50% cold-rolled and subsequently aged at 650 °C for 5 h. Microstructural evaluation revealed that fine and spherical γ’ phase with size of 80 ± 20 nm is precipitated during aging at 650 °C. By increasing aging temperature from 650 to 750 °C, coarse γ’ phase is obtained and consequently UTS is declined. The evolution of ɛ phase is observed as a result of aging at 850 °C. According to tensile test it can be demonstrated that ɛ phase decreases the UTS and increases the ductility of the alloy. Tensile test results in the range of 30–100 °C showed that by increasing the aging temperature from 550 to 650 °C, TEC increases and with increasing the amount of cold rolling from 30 to 50 pct, TEC decreases. Meanwhile the lowest TEC value is obtained with aging of the 50 pct cold-rolled specimens at 550 °C.

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3