Effect of Y2O3 content on microstructure and properties of Ni-based self-lubricating composite coating

Author:

Huang Bensheng,Hong Xiaolong,Chen Peng,Li Tianning,Luo Xia,Chen Lingzhi,Liu Ge

Abstract

In order to improve the wear resistance and corrosion resistance of sucker rod surface, Ni-based self-lubricating composite coating with Y2O3 was successfully prepared on 35CrMo steel substrate by high frequency induction heating cladding technology. The coating structure is uniform and dense, and there are no obvious defects such as pores and cracks. The microstructure of the coating layer was studied by means of metallographic microscope, scanning electron microscope and X-ray diffractometer. The hardness, wear resistance and corrosion resistance of the coating layer were tested by microhardness testers, friction and wear testers and electrochemical workstations. The results show that the main phases of the composite coating are γ- (Ni, Fe), Ni3Fe, CrB, TiC and Cr23C6. When the addition amount of Y2O3 is 2%, the average microhardness of the composite coating is the highest, which is 805.1 HV0.2; under the same wear conditions, the wear resistance of 2% Y2O3 composite coating is the best. The average friction coefficient and wear loss are reduced by 16.27% and 20.35% respectively compared with the composite coating without rare earth, and 37.55% and 48.02% respectively compared with the substrate. The wear mechanism of the composite coating is mainly severe adhesive wear, and there is a small amount of oxidation wear. With the increase of Y2O3 content, the self-corrosion potential of the composite coating fluctuates in a small range, and its self-corrosion current density decreases first and then increases. The self-corrosion potential of the composite coating containing 2% Y2O3 is more positive (–0.4316 V), and the self-corrosion current density is the smallest (3.9579 µA · cm−2), and its corrosion resistance is the best.

Funder

the sichuan provincial engineering research center of advanced materials manufacturing technology for shale gas high-efficient exploitation

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3