Correlation between hardness and abrasive wear of grinding balls

Author:

Aissat Sahraoui,Zaid Mohamed,Sadeddine Abdelhamid

Abstract

The grinding ball is manufactured by the Algerian Foundries (ALFET – Tiaret). It is used by the cement industry to transform the rock into fine, used in the cement manufacture. This product undergoes very frequent wear. This wear occurs in various forms (abrasion wear and impact wear) and each has a varying impact on this product life. Abrasion wear is the result of friction between many surfaces (rock, crusher shielding and balls between them), between which a sliding contact occurs, and causes a metal wrenching and a mechanical disintegration of these surfaces. The impact wear is the result of the shock between these surfaces (rock, crusher shielding and balls) and the ball that hits these surfaces from multiple angles, causes their disintegration. Generally, wear resistance improves when hardness increases and a very hard material is more resistant to wear because it less risk to seize in presence of particles abrasive and it opposes their penetration in its surface layer. Wear is estimated, in this work, by the mass loss of the heat-treated balls. A correlation between the hardness and abrasive wear of the balls is established in this work.

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

Reference22 articles.

1. Manuel des fontes moulées, traduit et adapté de Iron Castings Handbook par le Centre d’information des fontes moulées, 1983

2. Effect of abrasive mineral on alloy performance in the ball mill abrasion test

3. Microstructure selection criteria for cast irons with more than 10 wt.% chromium for wear applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3