Geometrical and morphometrical tools for the inclusion analysis of metallic alloys

Author:

Debayle JohanORCID

Abstract

The mechanical and use properties of metal alloys depend on several factors, including the amount and the geometry of impurities (inclusions). In this context, image analysis enables these inclusions to be studied from digital images acquired by various systems such as optical/electron microscopy or X-ray tomography. This paper therefore aims to present some geometrical and morphometrical tools of image analysis, in order to characterize inclusions in metal alloys. To achieve this quantification, many geometrical and morphometrical features are traditionally used to quantitatively describe a population of objects (inclusions). Integral geometry, via Minkowski’s functionals (in 2D: area, perimeter, Euler-Poincaré number), has been particularly investigated in image analysis. Nevertheless, they are sometimes insufficient for the characterization of complex microstructures (such as aggregates/agglomerates of objects). Other quantitative parameters are then necessary in order to discriminate or group different families of objects. In particular, shape diagrams are mathematical representations in the Euclidean plane for studying the morphology (shape) of objects, regardless of their size. In addition, this representation also makes it possible to analyze the evolution from one shape to another. In conclusion, image analysis using integral geometry and shape diagrams provide efficient tools with known mathematical properties to quantitatively describe inclusions (providing separate information on size and shape). The geometrical characteristics of these inclusions could thereafter be related to the mechanical properties of the metal alloys.

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

Reference31 articles.

1. Ohser J., Mücklich F., Statistical analysis of microstructures in materials science, John Wiley and Sons,  New York, USA, 2000

2. Ohser J., Schladitz K., Image processing and analysis, Clarendon Press Oxford,  Oxford, UK, 2006

3. Blaschke W., Vorlesungen über integralgeometrie, VEB, Berlin, 1955

4. Integral Geometry in Statistical Physics

5. Santalo L.A., Integral geometry and geometric probability, Cambridge University Press,  Cambridge, UK, 2004

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3