Experimental study of the effects of wire EDM on the characteristics of ferritic steel, at a micro-scale on the contour cut surface

Author:

Naveed NidaORCID

Abstract

This study, on a micro-scale, of the WEDM cut surfaces of specimens to which the contour method of residual stress measurement is being applied provides detailed information about the effects of the cutting process on the surface quality. This is defined by a combination of several parameters: variation in surface contour profile, sub-surface damage and surface texture. Measurements were taken at the start, the middle and at the end of the cut. This study shows that during WEDM cutting, a thin layer, extending to a depth of a few micrometres below the surface of the cut, is transformed. This layer is known as the recast layer. Using controlled-depth etching and X-ray diffraction, it is shown that this induces an additional tensile residual stress, parallel to the plane of the cut surface. The WEDM cut surface and sub-surface characteristics are also shown to vary along the length of the cut. Moreover, these micro-scale changes were compared with macro-scale residual stress results and provides an indication of the point at which the changes occurred by cutting process can be significantly relative to the macro-scale residual stress in a specimen.

Funder

I am also grateful to the East Midlands Development Agency, Rolls-Royce Power Engineering Ltd and The Open University to provide fund for this research.

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

Reference37 articles.

1. Prime M., Gonzales A., The contour method: simple 2-D mapping of residual stresses, Los Alamos National Lab., NM (US), 2000

2. Application of Deep Hole Drilling to the Measurement and Analysis of Residual Stresses in Steel Shrink-Fitted Assemblies

3. Schajer G.S., Roy G., Flaman M.T., Lu J., Hole-drilling and ring core methods, Handbook of measurement of residual stresses, 1996, pp. 5–34

4. Residual stress, stress relief, and inhomogeneity in aluminum plate

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3