Minimal blowing pressure allowing periodic oscillations in a model of bass brass instruments

Author:

Mattéoli RémiORCID,Gilbert JoëlORCID,Vergez ChristopheORCID,Dalmont Jean-Pierre,Maugeais SylvainORCID,Terrien SoizicORCID,Ablitzer Frédéric

Abstract

In this study, an acoustic resonator – a bass brass instrument – with multiple resonances coupled to an exciter – the player’s lips – with one resonance is modelled by a multidimensional dynamical system, and studied using a continuation and bifurcation software. Bifurcation diagrams are explored with respect to the blowing pressure, in particular with focus on the minimal blowing pressure allowing stable periodic oscillations and the associated frequency. The behaviour of the instrument is first studied close to a (non oscillating) equilibrium using linear stability analysis. This allows to determine the conditions at which an equilibrium destabilises and as such where oscillating regimes can emerge (corresponding to a sound production). This approach is useful to characterise the ease of playing of a brass instrument, which is assumed here to be related – as a first approximation – to the linear threshold pressure. In particular, the lower the threshold pressure, the lower the physical effort the player has to make to play a note [The Science of Brass Instruments. Springer-Verlag, 2021]. Cases are highlighted where periodic solutions in the bifurcation diagrams are reached for blowing pressures below the value given by the linear stability analysis. Thus, bifurcation diagrams allow a more in-depth analysis. Particular attention is devoted to the first playing regime of bass brass instruments (the pedal note and the ghost note of a tuba in particular), whose behaviour qualitatively differs from a trombone to a euphonium for instance.

Publisher

EDP Sciences

Subject

Electrical and Electronic Engineering,Speech and Hearing,Computer Science Applications,Acoustics and Ultrasonics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3