A simulation of traffic noise emissions at a roundabout based on a cellular automaton model

Author:

Du Canyi,Qiu Xinfa,Li FengORCID,Cai Ming

Abstract

The calculation and evaluation of traffic noise is an important task in urban road design. Roundabouts are a common form of urban road intersection. The complexity of traffic operations makes the calculation of traffic noise near a roundabout challenging. To explore traffic noise at roundabouts, a cellular automaton traffic flow model for a two-lane roundabout is established. Based on this model, a dynamic simulation method for traffic noise at roundabouts is proposed. The traffic operation and noise emissions at a roundabout are simulated. The vehicle speed distribution and traffic noise distribution at the roundabout are analysed, and the relationship between the traffic volume and sound power level of the cells is discussed. Finally, the proposed method is compared with existing traffic noise models, and the accuracy and efficiency of the proposed method are verified. The results of this paper show that the speed distribution and noise emission distribution at the roundabout are not uniform. When the traffic volume increases to saturation, the noise emission on the ring road will not keep increasing, and the sound power level of the cells on the inner ring is approximately 2 dBA higher than that of the outer ring. The methods and results in this paper may be valuable for road traffic design and noise control.

Funder

Key Technologies Research and Development Program

Natural Science Foundation of Guangdong Province

Foundation for Distinguished Young Talents in Higher Education of Guangdong

Science and Technology Planning Project of Guangzhou

Publisher

EDP Sciences

Subject

Electrical and Electronic Engineering,Speech and Hearing,Computer Science Applications,Acoustics and Ultrasonics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3