Laser-induced ultrasonic measurements for the detection and reconstruction of surface defects

Author:

Qian Feiming,Xing Guangzhen,Yang Ping,Hu Pengcheng,Zou Limin,Koukoulas Triantafillos

Abstract

Laser-induced ultrasonic measurement is a non-contact non-destructive technology that can be employed for the testing and assessment of surface defects. In order to improve the correct identification of defects, the full matrix capture (FMC) and total focusing method (TFM) are applied on the imaging process. FMC data includes A-scans resulting from the combination of all measurement axes defined by the sequential generation and detection of utilized laser beams in the system. In this paper, an aluminium block with four holes whose diameters range from 1 mm to 2.5 mm is assessed through B-scans, the synthetic aperture focusing technique (SAFT) and FMC/TFM. The results demonstrate that the FMC/TFM technology can significantly improve the imaging quality and signal-to-noise ratio (SNR). In addition, this method has higher lateral resolution and larger imaging range compared with traditional B-scans.

Funder

key technologies research and development program

national natural science foundation of china

china postdoctoral science foundation

Natural Science Foundation of Heilongjiang Province of China

Publisher

EDP Sciences

Subject

Electrical and Electronic Engineering,Speech and Hearing,Computer Science Applications,Acoustics and Ultrasonics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3