Towards a simplified and generalized monaural and binaural auditory model for psychoacoustics and speech intelligibility

Author:

Biberger ThomasORCID,Ewert Stephan D.ORCID

Abstract

Auditory perception involves cues in the monaural auditory pathways, as well as binaural cues based on interaural differences. So far, auditory models have often focused on either monaural or binaural experiments in isolation. Although binaural models typically build upon stages of (existing) monaural models, only a few attempts have been made to extend a monaural model by a binaural stage using a unified decision stage for monaural and binaural cues. A typical prototype of binaural processing has been the classical equalization-cancelation mechanism, which either involves signal-adaptive delays and provides a single channel output, or can be implemented with tapped delays providing a high-dimensional multichannel output. This contribution extends the (monaural) generalized envelope power spectrum model by a non-adaptive binaural stage with only a few, fixed output channels. The binaural stage resembles features of physiologically motivated hemispheric binaural processing, as simplified signal-processing stages, yielding a 5-channel monaural and binaural matrix feature “decoder” (BMFD). The back end of the existing monaural model is applied to the BMFD output and calculates short-time envelope power and power features. The resulting model accounts for several published psychoacoustic and speech-intelligibility experiments and achieves a prediction performance comparable to existing state-of-the-art models with more complex binaural processing.

Funder

Deutsche Forschungsgemeinschaft

Publisher

EDP Sciences

Subject

Electrical and Electronic Engineering,Speech and Hearing,Computer Science Applications,Acoustics and Ultrasonics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3