Towards 3D printed saxophone mouthpiece personalization: Acoustical analysis of design variations

Author:

Ozdemir MehmetORCID,Chatziioannou VasileiosORCID,Verlinden JoukeORCID,Cascini GaetanoORCID,Pàmies-Vilà MontserratORCID

Abstract

Saxophonists have different expectations from the saxophone mouthpiece, as it significantly affects the playability and the sound of the instrument. A mass personalization paradigm provides unique products to cater to their needs, using the flexibility of additive manufacturing. The lack of quantitative knowledge on mouthpiece design hinders the personalization attempts. This study aims to lay out how design parameters affect mouthpiece characteristics. Twenty-seven 3D-printed mouthpieces with varying design parameters are used in conjunction with an artificial blowing machine, to determine the acoustical relevance of the various mouthpiece designs on four selected mouthpiece features. The influence of the design parameters is evaluated statistically and via a case study with five saxophonists. The analysis shows that seven out of nine parameters tested affect the mouthpiece characteristics by relatively different amounts. A user study demonstrates that saxophonists confirm the results in 7 of 10 cases, and they prefer personalized mouthpieces in 4 of 5 cases. The results present a key contribution to the understanding of mouthpiece design. The findings provide valuable insights for new mouthpiece design and mouthpiece personalization.

Publisher

EDP Sciences

Reference50 articles.

1. Fletcher N.H., Rossing T.: The physics of musical instruments. Springer Science & Business Media, 1998.

2. Role of the Resonator Geometry on the Pressure Spectrum of Reed Conical Instruments

3. Teal L.: The Art of Saxophone Playing. The Art of Series. Summy-Birchard, 1963.

4. Hasbrook V.R.: Alto Saxophone Mouthpiece Pitch and Its Relation to Jazz and Classical Tone Qualities. University of Illinois at Urbana-Champaign, 2005.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3