In-flight directivity and sound power measurement of small-scale unmanned aerial systems

Author:

Herold GertORCID

Abstract

The sound emission characteristics of unmanned aerial systems are of interest in many contexts. For a realistic representation of the directional characteristics and the radiated sound energy, it is useful if the aircraft is operated under realistic conditions. However, deriving emission-based acoustic quantities for a typical mode of operation such as cruise flight is difficult. In this paper, the directivity and sound power of a quadcopter drone are determined using a microphone array measurement of a single flight through a predefined corridor. The recorded data are processed to both reconstruct the drone’s flight path and characterize its acoustic emission. To verify the reliability of the presented method, the signal processing is tested with simulated data from moving sources with the directivity of a monopole as well as a dipole. Using different discretizations of the radiation direction space and evaluating the frequency-dependent directivity factor, it is discussed how the sound radiation can be described as comprehensively as possible on the basis of as few quantities as possible.

Funder

Technische Universität Berlin

Publisher

EDP Sciences

Subject

Electrical and Electronic Engineering,Speech and Hearing,Computer Science Applications,Acoustics and Ultrasonics

Reference25 articles.

1. United States Department of Transportation, Federal Aviation Administration: FAA Aerospace Forecast – Fiscal Years 2021–2041, 2021. Available at https://www.faa.gov/data_research/aviation/aerospace_forecasts/.

2. Drone Noise Emission Characteristics and Noise Effects on Humans—A Systematic Review

3. ISO: ISO 3744:2010 – Acoustics – Determination of sound power levels and sound energy levels of noise sources using sound pressure – Engineering methods for an essentially free field over a reflecting plane, 2010. https://www.iso.org/standard/52055.html.

4. UAV Noise Emission—A Combined Experimental and Numerical Assessment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3