Classification of the perceptual impression of source-level blending between violins in a joint performance

Author:

Thilakan Jithin,BT Balamurali,Chen Jer-Ming,Kob Malte

Abstract

Quantifying auditory perception of blending between sound sources is a relevant topic in music perception, but remains poorly explored due to its complex and multidimensional nature. Previous studies were able to explain the source-level blending in musically constrained sound samples, but comprehensive modelling of blending perception that involves musically realistic samples was beyond their scope. Combining the methods of Music Information Retrieval (MIR) and Machine Learning (ML), this investigation attempts to classify sound samples from real musical scenarios having different musical excerpts according to their overall source-level blending impression. Monophonically rendered samples of 2 violins in unison, extracted from in-situ close-mic recordings of ensemble performance, were perceptually evaluated and labeled into blended and non-blended classes by a group of expert listeners. Mel Frequency Cepstral Coefficients (MFCCs) were extracted, and a classification model was developed using linear and non-linear feature transformation techniques adapted from the dimensionality reduction strategies such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and t-Stochastic Neighbourhood Embedding (t-SNE), paired with Euclidean distance measure as a metric to evaluate the similarity of transformed feature clusters. Results showed that LDA transformed raw MFCCs trained and validated using a separate train-test data set and Leave-One-Out Cross-Validation (LOOCV) resulted in an accuracy of 87.5%, and 87.1% respectively in correctly classifying the samples into blended and non-blended classes. In this regard, the proposed classification model which incorporates “ecological” score-independent sound samples without requiring access to individual source recordings advances the holistic modeling of blending.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

EDP Sciences

Subject

Electrical and Electronic Engineering,Speech and Hearing,Computer Science Applications,Acoustics and Ultrasonics

Reference51 articles.

1. An Acoustical Study of Individual Voices in Choral Blend

2. Identification and blend of timbres as a basis for orchestration

3. Roles for Spectral Centroid and Other Factors in Determining "Blended" Instrument Pairings in Orchestration

4. Blending Between Bassoon and Horn Players

5. De Francisco M., Kob M., Rivest J.F., Traube C.: ODESSA – orchestral distribution effects in sound, space and acoustics: an interdisciplinary symphonic recording for the study of orchestral sound blending, in: Proceedings of International Symposium on Musical Acoustics (ISMA), 13–17 November 2019, Detmold, Germany, 2019, pp. 33–41.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3