Application of the LMS algorithm to identify the surface velocity responsible for the radiated sound pressure

Author:

Kropp Wolfgang,Larsson Krister,Lobato Thiago,Sottek Roland

Abstract

A time domain approach based on the least mean square (LMS) algorithm is applied to reconstruct the source amplitude and source distribution on a plate. For this a numerical experiment is established. A boundary element model is used to calculate the required impulse response functions describing the pressure in near- and far-field for a given volume flow at individual patches on the plate. Three different cases are considered. Firstly, a volume flow is given to a single patch. The LMS algorithm is used to reconstruct the source signal by means of receiving positions in the far-field. Secondly, the approach is used to identify the vibration pattern and source signal on a line of patches. Thirdly, a vibration pattern was given to the plate as the whole. For the reconstruction an assumption was made about the underlying vibration patterns (e.g. expansion in vibrational modes). Such an approach proved to be very time efficient and powerful. It also showed the need to place the receiving positions in the near-field to be able to obtain correct results over the whole frequency range. However, this is not a problem of the approach based on the LMS algorithm, but just due to the underlying physics. It is not possible to deduce the near-field from far-field observations, and therefore the vibrations mainly leading to a near-field are simply not visible in the far-field.

Publisher

EDP Sciences

Reference21 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3