Abstract
In this paper, a detailed sensitivity and feasibility analysis of the active manipulation scheme for scalar Helmholtz fields proposed in our previous works, in both free space and constant-depth homogeneous ocean environments, is presented. We apply the method of moments (MoM) together with Tikhonov regularization with the Morozov discrepancy principle to investigate the effects of varying the problem parameters to the accuracy and feasibility of the proposed active field control strategy. We discuss the feasibility of the active scheme (with respect to power budget, control accuracy and process error) as a function of the frequency, the distance between the control region and the source, the mutual distance between the control regions, and the size of the control region. Process error is considered as well to investigate the possibility of an accurate active control in the presence of manufacturing or feeding noise. The numerical simulations show the accuracy of the active field control scheme and indicate some challenges and limitations for its physical implementation.
Funder
army research office
national science foundation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Active control of electromagnetic fields in layered media;Journal of Electromagnetic Waves and Applications;2023-11-29
2. Sensitivity analysis for active electromagnetic field manipulation in free space;Applied Mathematics in Science and Engineering;2022-09-19
3. Enhanced Underwater Acoustic Communication via Active Field Control;The 15th International Conference on Underwater Networks & Systems;2021-11-22