Design of an in-duct micro-perforated panel absorber for axial fan noise attenuation

Author:

Floss Sebastian,Czwielong Felix,Kaltenbacher Manfred,Becker Stefan

Abstract

The reduction of fan noise in ducts is a challenging task for acoustic engineers. Usually, the confined space where an absorber can be integrated is small. In addition, one has to consider the influence of the absorber on the flow field and the attenuation of noise should be as great as possible. In this contribution, we investigate the application of a micro-perforated absorber (MPA) in the direct vicinity of a low-pressure axial fan operating at low Mach number conditions. The micro-perforated plates (MPP) are modeled using the Johnson–Champoux–Allard–Lafarge (JCAL) model for porous materials. The entire geometrical setup of duct, fan and MPA is then simulated with the Finite Element (FE) method; the pre-processing effort is reduced by using non-conforming grids to discretize the different regions. The influence of the cavity length and the positioning of the fan are analyzed. The results are then applied to the construction of a full-sized MPA duct component that takes the limited space into consideration. Simulation results and overall functionality are compared to experimental results obtained in an axial-fan test rig. The Finite Element framework proved to be robust in predicting overall sound pressure level reduction in the higher volume flow rates. It is also shown that the MPP increases sound reduction in the low-frequency regime and at two resonant frequencies of the MPA setup. However, its main benefit lies in maintaining the efficiency of the fan. The location of the fan downstream or within the MPA has a significant effect on both the simulated and measured sound reduction.

Publisher

EDP Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3