Splitting for some classes of homeomorphic and coalescing stochastic flows

Author:

Vovchanskyi M.B.ORCID

Abstract

The splitting scheme (the Kato-Trotter formula) is applied to stochastic flows with common noise of the type introduced by Th.E. Harris. The case of possibly coalescing flows with continuous infinitesimal covariance is considered and the weak convergence of the corresponding finite-dimensional motions is established. As applications, results for the convergence of the associated pushforward measures and dual flows are given. Similarities between splitting and the Euler-Maruyama scheme yield estimates of the speed of the convergence under additional regularity assumptions.

Funder

Simons Foundation

Publisher

EDP Sciences

Reference43 articles.

1. Coalescing and noncoalescing stochastic flows in R1

2. Kunita H., Cambridge Studies in Advanced Mathematics. Vol. 24 of Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, Cambridge (1990) xiv+346.

3. Dorogovtsev A.A., Proceedings of Institute of Mathematics of NAS of Ukraine. Mathematics and its Applications. Vol. 66 of Measure-valued Processes and Stochastic Flows. Natsional’na Akademiya Nauk Ukraini, Institut Matematiki, Kyiv (2007) 290.

4. Stochastic neural field model of stimulus-dependent variability in cortical neurons

5. Correlated Brownian motions and the depletion effect in colloids

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3