Universal consistency of the k-NN rule in metric spaces and Nagata dimension. II

Author:

Kumari Sushma,Pestov Vladimir G.ORCID

Abstract

We continue to investigate the k nearest neighbour (k-NN) learning rule in complete separable metric spaces. Thanks to the results of Cérou and Guyader (2006) and Preiss (1983), this rule is known to be universally consistent in every such metric space that is sigma-finite dimensional in the sense of Nagata. Here we show that the rule is strongly universally consistent in such spaces in the absence of ties. Under the tie-breaking strategy applied by Devroye, Györfi, Krzyżak, and Lugosi (1994) in the Euclidean setting, we manage to show the strong universal consistency in non-Archimedian metric spaces (i.e., those of Nagata dimension zero). Combining the theorem of Cérou and Guyader with results of Assouad and Quentin de Gromard (2006), one deduces that the k-NN rule is universally consistent in metric spaces having finite dimension in the sense of de Groot. In particular, the k-NN rule is universally consistent in the Heisenberg group which is not sigma-finite dimensional in the sense of Nagata as follows from an example independently constructed by Korányi and Reimann (1995) and Sawyer and Wheeden (1992).

Funder

Japan Society for the Promotion of Science London

CNPQ

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3