Usage of Simulated Response Matrices for the Scintillation Spectra Unfolding

Author:

Klusoň J.,Urban T.

Abstract

Response of the scintillation spectrometer to incident photons has complex character due to complex character of photon interaction processes. Experimental spectrum thus provide qualitative information given by the identifiable peaks positions, while extraction of the full, quantitative information (i.e. photon flux energy distribution) require spectra unfolding based on the spectrometer response (represented by the response matrix) knowledge. As experimental determination of response matrix is difficult or impossible in most cases, the Monte Carlo simulation is the proved solution. Usage of the unfolding for experimental spectra processing enable to determine dosimetric characteristics of the incident photon fields and/or characteristics of the sources, creating those photon fields. The response matrices for scintillation spectrometers with different detectors (commonly used NaI, BGO and new LaBr) were calculated using Monte Carlo method. The response to the internal activity of the LaBr detector was also simulated and considered in spectra processing. Calculated matrices were used for unfolding of the experimental spectra from different applications to determine desired dosimetric quantities. Typical applications are environmental monitoring, monitoring of the working environment, accidental monitoring and contamination measurement, etc. Method is suitable also for the airborne monitoring or security applications. Results for individual detection systems are compared and discussed with aim to analyze potential advantages of the LaBr detector for considered applications.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3