The energy band memory server algorithm for parallel Monte Carlo transport calculations

Author:

Felker Kyle G.,Siegel Andrew R.,Smith Kord S.,Romano Paul K.,Forget Benoit

Abstract

An algorithm is developed to significantly reduce the on-node footprint of cross section memory in Monte Carlo particle tracking algorithms. The classic method of per-node replication of cross section data is replaced by a memory server model, in which the read-only lookup tables reside on a remote set of disjoint processors. The main particle tracking algorithm is then modified in such a way as to enable efficient use of the remotely stored data in the particle tracking algorithm. Results of a prototype code on a Blue Gene/Q installation reveal that the penalty for remote storage is reasonable in the context of time scales for real-world applications, thus yielding a path forward for a broad range of applications that are memory bound using current techniques.

Publisher

EDP Sciences

Reference12 articles.

1. The effect of load imbalances on the performance of Monte Carlo algorithms in LWR analysis

2. Optimizing Memory Constrained Environments in Monte Carlo Nuclear Reactor Simulations

3. Brown F., Recent advances and future prospects for monte carlo, Tech. Rep. LA-UR-10-05634, Los Alamos National Laboratory (2010).

4. Irving D. C., R. M. F. Jr., Kam F., O5R, A general-purpose Monte Carlo neutron transport code, Tech. rep., Oak Ridge National Laboratory (1965).

5. Monte Carlo methods for radiation transport analysis on vector computers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Logically Parallel Communication for Fast MPI+Threads Applications;IEEE Transactions on Parallel and Distributed Systems;2021-12-01

2. RMACXX: An Efficient High-Level C++ Interface over MPI-3 RMA;2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid);2021-05

3. How I learned to stop worrying about user-visible endpoints and love MPI;Proceedings of the 34th ACM International Conference on Supercomputing;2020-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3