Effect of abrasive particle morphology along with other influencing parameters in magnetic abrasive finishing process

Author:

Ahmadi FarshidORCID,Beiramlou Hassan,Yazdi Pouria

Abstract

Surface characteristics play a very important role in medical implants and among surface features, surface roughness is very effective in some medical applications. Among the various methods used to improve surface roughness, magnetic abrasive finishing (MAF) process has been widely used in medical engineering. In this study, the effect of abrasive particle morphology along with four other process parameters, including type of work metal, finishing time, speed of finishing operation, and the type of abrasive powder were experimentally evaluated. Full factorial technique was used for design of experiment. Three commonly used metals in orthopedic implants i.e., Ti-6Al-4V alloy, AZ31 alloy and austenitic stainless-steel 316LVM, were selected for this study. Also, two types of magnetic abrasive particles with different shapes (spherical and rod-shaped) were considered in the experiments. The results of the experiments indicated that the morphology of the abrasive particles and the finishing time had the greatest effect on surface roughness and using rod-shaped abrasive particles resulted in better surface quality comparing to the spherical particles. Besides, the surface quality of steel 316LVM after MAF was the best among the other examined metals. Interaction plots of ANOVA also showed that interactions of material with morphology of abrasive particles, and material with machining time were found to be reasonably significant.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3