An investigation on dynamic characteristics of herringbone planetary gear system with torsional flexibility between the left and right teeth of the sun gear

Author:

Xu XiangyangORCID,Ge HongweiORCID,Deng Jijun,Wang Jibo,Chen Renxiang

Abstract

Herringbone planetary gear system (HPGS) has high power density and complex structure. The torsional flexibility of the left and right teeth of the sun gear is closely related to the dynamic characteristics of the HPGS. In this research, considering the coordination conditions of both sides torsional stiffness and axial slide of the sun gear, a new dynamic model of the HPGS considering the meshing phase difference between left and right teeth of the sun gear is developed based on the lumped-parameter method, and the influence mechanism of torsional stiffness and axial sliding is studied. Moreover, the dynamic parameters and dynamic characteristics of the HPGS are analyzed in the case of varying torsoinal stiffness and axial slide. The results show that the torsional stiffness of left and right teeth and the axial slide of sun gear have significant impacts on the dynamic parameters and dynamic mesh force response. With the increase of the torsional flexibility (the decrease the torsional stiffness), the sun gear and planet gear meshing stiffness and the maximum tooth surface load are both increased on the left side (input side) and decreased on the right side, but the main peak values and peak frequencies of dynamic response on both sides of the s-p meshing pairs decrease significantly. In addition, when the sun gear slides toward the output side axially, meshing stiffness and dynamic mesh force response main peak values decreased on the left side (input side) and increased on the right side, but the main resonance peaks frequencies keep the same.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3