Combination of oriented-plane curvature reproduction and squeeze film effect-based texture reproduction to simulate curved and textured surface

Author:

Zeng Tao,Liu Yan,Ouyang Enshan

Abstract

The finger skin contains a variety of receptors, which provide multiple tactile sensing channels. When a finger touches the surface of an object, people can simultaneously perceive curvature, texture, softness, temperature, and so on. However, in most of research activities, the designed haptic feedback devices can only focus on a certain channel. In this paper, the rendering of curved and periodic textured surfaces involving two channels, i.e., curvature and texture, was studied. Two psychophysical experiments were conducted to investigate whether the coupling of kinesthetic feedback of curvature and tactile feedback of texture could reproduce curved and textured surfaces with high fidelity. The results showed a deviation of the point of subjective equality values in terms of curvature and roughness, indicating that the curvature rendering and texture rendering have an impact on each other. Therefore, it is necessary to correct the bias when making virtual rendering. The influence of curvature on texture rendering is reduced by recalculating and adjusting the spatial period of the synthesized texture in real-time; the influence of texture on curvature rendering is eliminate by compensating the force difference between touch on physical strip and artificial stimulus.

Funder

Department of science and technology of Fujian Province

National Nature Science Foundations of China

Shenzhen Science and Technology Innovation Committee

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

Reference44 articles.

1. Similar mechanisms underlie curvature comparison by static and dynamic touch

2. Local Surface Orientation Dominates Haptic Curvature Discrimination

3. Trajectory of contact region on the fingerpad gives the illusion of haptic shape

4. Cini G., Frisoli A., Marcheschi S., Salsedo F., Bergamasco M., A novel fingertip haptic device for display of local contact geometry, in: First Joint Eurohaptics Conf. and Symp. Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC '05), 2005, pp. 602–605

5. Gabardi M., Solazzi M., Leonardis D., Frisoli A., A new wearable fingertip haptic interface for the rendering of virtual shapes and surface features, in: IEEE Haptics Symp. 2016, pp. 140–146

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3