Improved fuzzy neural network control for the clamping force of Camellia fruit picking manipulator

Author:

Fan ZiyanORCID,Li Lijun,Liao Kai,Gao Zicheng,Li Yuhang,Xie Hao

Abstract

During the operation of the vibrating mechanism, the push-shaking camellia fruit picking manipulator needs to ensure a constant force output of the clamping hydraulic motor in order to make sure that the camellia fruit tree trunk wouldn't loosen or damage, which may affect its later growth, during the picking process. In this regard, this paper derived the state space model of the valve-controlled clamping hydraulic motor system of the push-shaking camellia fruit picking manipulator, and the fuzzy wavelet neural network (FWNN) was designed on the basis of the traditional incremental PID control principle and the parameters of the neural network were optimized by the improved grey wolf optimizer (GWO). And then, the control system was simulated with the MATLAB/Simulink software without and with external interference, and compared and analyzed it with traditional PID controller and fuzzy PID (FPID) controller. The results show that the traditional PID controller and the FPID control have slow response and poor robustness, while the improved fuzzy wavelet neural network PID (IFWNN PID) controller possesses the characteristics of fast response and strong robustness, which can well meet the requirement of the constant clamping force of hydraulic motors. Finally, the field clamping test was carried out on the picking manipulator. The results show that the manipulator controlled by the IFWNN PID controller shortens the clamping time by 20.0% and reduces the clamping damage by 13.6% compared with the PID controller, which is verified that the designed controller can meet the clamping operation requirements of the camellia fruit picking machine.

Funder

Key Research and Development Program of Hunan Province of China

Postgraduate Science and Technology Innovation Fund Project of Central South University of Forestry and Technology

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

Reference26 articles.

1. Wang W. et al., Active role of tea oil in medicine and health care, Food Nutr. China 48–51 (2007)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3