Convergence analysis and mesh optimization of finite element analysis related to helical springs

Author:

Cadet GuillaumeORCID,Paredes ManuelORCID

Abstract

Helical springs are widely used in engineering applications. In order to reduce cost in “try and error” time consuming experimental campaigns, numerical simulations became an essential tool for engineers. Indeed, it saves considerable time in the ahead design phase of a project to ensure the feasibility of structures. However, these simulations run thanks to a lot of parameters, which all must be selected carefully to get access to reliable results. In this paper, ten main modeling parameters are presented. Thanks to a valuable literature statistical analysis, seven of them are settled. Three remain to be studied: the mesh density, the order of the elements and the integration method. Then, three convergence analyses are performed with ABAQUS about the circular geometry accuracy of the tessellated surface, the axial stiffness (and axial load) accuracy of the helical spring and the maximal Von Mises stress accuracy within the helical spring. The numerical campaign is led with 8 mesh densities along the circumference and 6 element types. After comparison, in order to get both fast and accurate results, a limited list of near-optimal combination of density and element type are proposed. The users are free to use any of the presented solutions in function of the desired admissible accuracy of their model.The proposed meshing technique can be exploited for any helical structure with circular cross section, mainly loaded in torsion and shear, such as extension and compression springs.

Publisher

EDP Sciences

Reference92 articles.

1. Paredes M., Enhanced formulae for determining both free length and rate of cylindrical compression springs, ASME. J. Mech. Des. 138, (2015)

2. Norme-NF-EN-13906-1, Ressorts hélicoïdaux cylindriques fabriqués à partir de fils ronds et de barres, calcul et conception, partie 1 : Ressorts de compression, AFNOR (2002)

3. IST, Essential Spring Design Training Course (Institute of Spring Technology, Sheffield, United Kingdom, 1980−2005)

4. Wahl A.M., Mechanical Springs (McGraw-Hill Book Company, Second Edition, 1963)

5. Cadet G., Paredes M., A new exhaustive semi-analytical method to calculate stress distribution on the surface of a curved beam with circular cross section, with an application to helical compression springs, Eur. J. Mech. − A (2023)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3