Effect of bipropellant combustion products on the rocket nozzle design

Author:

Abada Omar,Abada Abderahim,El-Hirtsi Ahmed Abdallah

Abstract

The focus of this research work is to investigate numerically the effect of adding the gas on the design and performance of axisymmetric MLN nozzles. A FORTRAN code was developed to design this nozzle using the characteristics method (MOC) at high temperature. The thermochemical and combustion studies of the most used liquid propellants on the satellites and launch vehicles allow to known all gases. Four engines are investigated: Ariane 5 (Vulcain 2), Ariane-5 upper stage engine (Aestus), Zenit first stage (RD-170) and Falcon 9 upper stage (Raptor). Thermodynamic analysis of parameters design MLN (such as length, Mach number, mass, thrust coefficient) was conducted. The comparison shows that the presence of 50% of H2O gas in combustion species increases the nozzle design parameters (diatomic gas including air) in the order of 25%. On the other hand, the existence of CO2 gas considerably increases approximately 35% the length and the exhaust radius. These rise depend on gases percentage in the combustion. The truncation method is applied in the MLN nozzles to optimize the thrust/weight ratio.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

Reference21 articles.

1. Sutton G.P., Biblarz O., Rocket propulsion elements, 7th edn. (John Wiley & Sons, New York, 2001)

2. Exhaust Nozzle Contour for Optimum Thrust

3. Farley J.M., Campbell C.E., Performance of several method of characteristics exhaust nozzles, NASA TN D293, 1960

4. Comparison of Minimum Length Nozzles

5. Argrow B.M., Emanuel G., Computational analysis of the transonic flow field of two-dimensional minimum length nozzles, AIAA-1989-1822, in 20th Fluid Dynamics, Plasma Dynamics and Lasers Conference, Buffalo, NY, 1989, June 12–14

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3