Investigation on hard turning temperature under a novel pulsating MQL environment: An experimental and modelling approach

Author:

Roy Soumikh,Kumar Ramanuj,Sahoo Ashok Kumar,Pandey AnishORCID,Panda AmlanaORCID

Abstract

Generation of total heat in hard turning largely influenced the cutting tool wear, tool life and finishing quality of work-surface. Thus, the measurement of this heat in terms of temperature becomes a necessity for achieving favourable machining performances. Therefore, this work presents a novel study on temperature measurement in three different zones during hard turning operation of 4340 grade steel under pulsating MQL environment. Temperatures are measured at three different locations namely chip-tool interface, flank face, and machined work surface (near to tool-work contact) and the location wise temperature is termed as chip tool interface temperature (T), flank face temperature (Tf) and machined work surface temperature (Tw) correspondingly. The temperature T and Tf are measured with help of K-type thermocouple while Tw is measured by Fluke make infra-red thermal camera. Pulsating MQL significantly reduced the temperature as the maximum temperature is noticed 110 °C which corresponds to chip-tool interface temperature (T) at highest speed (200 m/min) condition. In each test, the order of temperature follow the trend as: T > Tf > Tw. Considering average of all 16 temperatures, T is 14.42% greater than Tf and 39.36% larger than Tw while Tf is 21.79% greater than Tw. Experimental results concludes that the cutting speed is the most influencing factor followed by depth of cut for both T and Tf, whereas depth of cut is the most influencing factor for Tw. Further, these temperatures are predicted using linear regression, and absolute mean error (MAE) for responses T, Tf, and Tw is noticed as 1.848%, 0.542%, and 3.766% individually. Additionally, the optimum setting of input terms are estimated using WPCA (weighted principal component analysis) and found to be dc1 (0.1 mm) − fr2 (0.08 mm/rev) − vc2 (100 m/min) − Pt2 (2 s).

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3