On the anti-missile interception technique of unpowered phase based on data-driven theory

Author:

Huang Yong,Li YangORCID

Abstract

Abstract. The anti-missile interception technique of unpowered phase is of much importance in the military field, which depends on the prediction of the missile trajectory and the establishment of the missile model. With rapid development of data science field and large amounts of available data observed, there are more and more powerful data-driven methods proposed recently in discovering governing equations of complex systems. In this work, we introduce an anti-missile interception technique via a data-driven method based on Koopman operator theory. More specifically, we describe the dynamical model of the missile established by classical mechanics to generate the trajectorial data. Then we perform the data-driven method based on Koopman operator to identify the governing equations for the position and velocity of the missile. Numerical experiments show that the trajectories of the learned model agree well with the ones of the true model. The effectiveness and accuracy of this technique suggest that it will be realized in practical applications of anti-missile interception.

Funder

Six talent peaks project in Jiangsu Province

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Planning for Air Defense Operations Based on Simulated Annealing Algorithm;2023 2nd International Conference on Machine Learning, Cloud Computing and Intelligent Mining (MLCCIM);2023-07-25

2. A data-driven framework for learning hybrid dynamical systems;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-06-01

3. Rapid Optimal Control Law Generation: A Mixture of Experts Based Method;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3