Aerodynamic control of a diffusion flame to optimize materials' transition in a rotary cement kiln

Author:

Nial MohamedORCID,Loukarfi Larbi,Naji HassaneORCID

Abstract

The aim of this work is to deepen the understanding of the aerodynamics of a diffusion flame in a rotary cement kiln. The kiln is a rotary with a cylindrical shaped, long and equipped with a burner, and it is the seat of a diffusion flame with an axisymmetric turbulent jet. The kiln has a capacity of 8,000 Nm3 to 13,000 Nm3 of natural gas and primary air at T = 25 °C which interacts with a secondary hot air volume at T = 800 °C. The aerodynamic modelling of the furnace is achieved using the turbulence model RNG kε, which is able to handle the turbulence and capture the vortex shedding process. The Ansys/Fluent code, based on the finite volume approach to solve the Reynolds averaged Navier-Stokes (RANS), was used in this study. The interactions between turbulence and diffusion flame were handled by the PDF (Probability Density Function) approach. The numerical simulations have been validated by experiments from the kiln considered. Based on the findings obtained, it is concluded that the recirculation zone seems of paramount importance when combustion is taken into account because the reverse flow improves the flame stability and affects the combustion efficiency. In addition, limiting the secondary air flow through the furnace is major to improve combustion and avoid disturbing the advancement of the material along the kiln.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

Reference31 articles.

1. An experimental and numerical study of stagnation point heat transfer for methane/air laminar flame impinging on a flat surface

2. Problems of turbulent diffusion and flame jet

3. Vaccaro M.H., Low NOx rotary kiln burner technology, design principles and case study, in Proceeding of IEEE-IAS/PCA 44th Cement Industry Technical Conference, Jacksonville, Florida, 2002, 265–270

4. Performance Characteristics of the Novel Low-NOx CGRI Burner For Use with High Air Preheat

5. Boateng A.A., Rotary Kilns, Transport Phenomena and Transport Processes, 2nd edition, Elsevier (2015)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3