An epilimnion and hypolimnion temperature model based on air temperature and lake characteristics

Author:

Prats Jordi,Danis Pierre-Alain

Abstract

Water temperature is an essential ecological variable that influences life beings at several organizational levels, but its monitoring at the regional level is costly. An alternative is using models, which summarise the knowledge of the functioning of the system so that they can be used to answer specific questions. We present a model to calculate the epilimnion and hypolimnion temperature of inland water bodies based on air temperature and on their geographical and morphological characteristics. The seven model parameters were parameterized by using official monitoring data and the satellite temperature data of the data set LakeSST for French water bodies. The performance of the parameterised model was compared to that of two widely used models (FLake and air2water with four parameters). The model showed a good performance in the simulation of epilimnion temperatures, especially in the summer. For hypolimnion temperatures the performance was worse, but still comparable to that of other models. Because of its good performance and the few data needed to run the model, it is a good choice for managers interested in the thermal behaviour of inland water bodies.

Publisher

EDP Sciences

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Water Science and Technology,Ecology,Aquatic Science

Reference119 articles.

1. Spatial heterogeneity in geothermally-influenced lakes derived from atmospherically corrected Landsat thermal imagery and three-dimensional hydrodynamic modelling

2. Barton K. 2018. MuMIn: Multi-Model Inference. R package version 1.42.1.

3. Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts

4. Stratification of very deep, thermally stratified lakes

5. Bouchez C. 2010. Modélisation des températures de surface et de fond des plans d'eau. École de Mines de Paris & École Nationale du Génie Rural des Eaux et des Forêts, Université Pierre et Marie Curie, 49.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3