Urban energy system impact analysis: integration of household solar panels and electric vehicles into smart cities via storage and smart charging

Author:

Mitova StefaniaORCID,Kahsar RudyORCID

Abstract

Smart charging and battery storage can improve the integration of electric vehicles (EV's) and photovoltaic solar panels (PV's) into the residential buildings of a smart city. The impact of those two solutions can vary across households with an EV, PV, both, or no technologies. Therefore, it is unclear how smart charging and storage impact the energy, economic, and environmental benefits of each technology adoption group. To address this problem, an urban energy system dynamics model compares two smart charging scenarios that optimize PV energy consumption and carbon emissions as well as one scenario that optimizes storage. The results show that in general storage reduces carbon emissions and increases solar energy use more effectively than smart charging. Specifically, it reduces emissions at a rate of 17% and smart charging at 7%; it also increases PV self-consumption at a rate of 45% and smart charging at 28%. The main reason for this difference is that storage is able to shift a larger electricity load than smart charging without compromising user convenience. However, expenditures decline at a faster rate in the smart charging scenario (–91%) than the storage scenario (–52%), due to the ratio of Value of Solar to residential tariffs. Therefore, this article recommends storage as a solution to all technology adoption groups; furthermore, cities are encouraged to invest in energy storage solutions in the short term as well as smart devices in the long term, so that eventually smart charging could shift a larger share of the loads as well. The contribution of this study is that it compares several experimental groups across the energy, emission, and economic benefits derived from their respective clean energy technologies; it also provides specific guidelines for parties interested in optimizing the benefits of their technologies.

Publisher

EDP Sciences

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3