Transition towards a full self-sufficiency through PV systems integration for sub-Saharan Africa: a technical approach for a smart blockchain-based mini-grid

Author:

Finke SebastianORCID,Velenderić MicheleORCID,Severengiz Semih,Pankov Oleg,Baum Christof

Abstract

Access to affordable, reliable and clean energy is an important sustainability goal of the United Nations. In areas where the public electricity grid is unreliable or unavailable, photovoltaic systems can be a solution. However, they are cost-intensive, mainly because of the energy storage systems. Mini-grids can be an answer for reducing upfront investment and overall system lifetime costs while increasing electricity availability. The mini-grid technology is mature, nevertheless, there are downsides when it comes to integrating existing solar systems of different manufacturers. The system topology is usually predefined and a central instance controls the mini-grid. Thus, the integration of existing power systems is difficult due to the communication constraints of these systems with the mini-grid controller. Including existing power systems into a decentralized mini-grid, can highly increase cost-efficiency. In a decentralized approach payments for the consumed energy between mini-grid actors are required. Accounting is, however, a complex administrative procedure, if the respective power systems are owned by different individuals and organizations. A transparent blockchain-based temper-proof approach can be a solution to automate metering and billing, allowing automatic payments between independent subsystem owners using smart contracts. In order to further optimize the smart mini-grid, an artificial intelligence learning algorithm for a dynamic electricity price needs to be developed. This smart and decentralized approach for building Mini-Grids is a novelty bringing solar systems one step closer to self-sufficiency. This paper describes how a smart mini-grid solution can be implemented using the Don Bosco Solar & Renewable Energy Center campus mini-grid in Tema, Ghana as a case study.

Funder

federal ministry of environment, nature conservation and nuclear safety

Publisher

EDP Sciences

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference15 articles.

1. Worldbank. Access to electricity (% of population). Available online: https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS (accessed on 19 March 2021)

2. The role of decentralized systems in providing universal electricity access in Sub-Saharan Africa – A model-based approach

3. Rolland S., Glania G., Hybrid Mini-Grids for Rural Electrification: Lessons Learned, Alliance for Rural Electrification (ARE) (2011)

4. Institute for Advanced Sustainability Studies, Exploring the nexus of mini-grids and digital technologies (2019)

5. https://zigbeealliance.org/de/(accessed on 11 November 2020)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3